1,什么是博弈论

“博弈论”是运筹学的一个分支,又称对策论、竞局理论,是研究对抗局势的模型和探索最优对抗策略。其基本假设是:局中人都希望在竞争中获胜,并且有各自的目标以及能分辨竞争结果的优劣。因此如何合理的利用局中人相互依存的关系,进行决策是“博弈论”的主题。它有以下内容: ①2人对策及n(n≥2)人对策; ②零和对策和非零和对策; ③合作对策与非合作对策。 “博弈论”发展于第二次世界大战期间,战后在经济领域得到推广。

什么是博弈论

2,博弈是什么简单明了的解释

博弈,词语解释是局戏、围棋、赌博。现代数学中有博弈论,亦名“对策论”、“赛局理论”,属应用数学的一个分支, 表示在多决策主体之间行为具有相互作用时,各主体根据所掌握信息及对自身能力的认知,做出有利于自己的决策的一种行为理论。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。
下棋……
博弈,词语解释是局戏、围棋、赌博

博弈是什么简单明了的解释

3,博弈什么意思

(1).局戏和围棋。  【出处】:《论语·阳货》:“饱食终日,无所用心,难矣哉!不有博弈者乎?为之,犹贤乎已。” 朱熹集注:“博,局戏;弈,围棋也。”《汉书·游侠传·陈遵》:“祖父 遂 ,字 长子 , 宣帝 微时与有故,相随博弈,数负进。” 颜师古注:“博,六博;弈,围碁也。”   【示例】:唐 韩愈《郑公神道碑文》:“公与宾客朋游,饮酒必极醉,投壶博弈,穷日夜,若乐而不厌者。” 明 胡应麟《少室山房笔丛·九流绪论上》:“艺主书计射御,而博弈绘画诸工附之。”(2).指赌博。  【出处】:宋 苏轼《策别》十七:“出为盗贼,聚为博弈,羣饮於市肆,而叫号於郊野。” 清 戴名世《财神问对》:“聚为博弈,出为盗贼。”   【示例】:郑振铎《埃娥》五:“好像博弈负了一场似的,他耸耸肩走了。”
百度百科上有介绍的: 在多决策主体之间行为具有相互作用时,各主体根据所掌握信息及对自身能力的认知,做出有利于自己的决策的一种行为。博弈,词语解释是局戏、围棋、赌博。现代数学中有博弈论,亦名“对策论”、“赛局理论”,属应用数学的一个分支, 表示在多决策主体之间行为具有相互作用时,各主体根据所掌握信息及对自身能力的认知,做出有利于自己的决策的一种行为理论。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。图书《博弈》介绍了博弈的发展。
释义一:下棋 (1)局戏和围棋。 (2)指赌博。 释义二:现代数学中的博弈论 博弈论是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜目标的理论。博弈论是研究互动决策的理论。博弈可以分析自己与对手的利弊关系,从而确立自己在博弈中的优势,因此有不少博弈理论,可以帮助对弈者分析局势,从而采取相应策略,最终达到取胜的目的。博弈的类型分为:合作博弈、非合作博弈、完全信息博弈、非完全信息博弈、静态博弈、动态博弈,等等。

博弈什么意思

4,博弈论的概念是什么呢

博弈要素:   (1)局中人(players):在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。   (2)策略(strategiges):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。   (3)得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。   (4)次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。   (5)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。   纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。   这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。   对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略 b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。   有了上述定义,就立即得到纳什定理:   任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。   纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。   纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。   但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。   塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡

5,什么是博弈

博弈博弈的基本概念博弈论的基本概念包括:参与人、行为、信息、战略、支付函数、结果、均衡。参与人是指博弈中选择行动以最大化自身利益(效用、利润等)的决策主体(如个人、厂商、国家)。行动是指参与人的决策变量。战略是指参与人选择行动的规则,它告诉参与人在什么时候选择什么行动。例如,“人不犯我、我不犯人;人若犯我、我必犯人”是一种战略。这里,“犯”与“不犯”是两种不同的行动。战略规定了什么时候选择“犯”,什么时候选择“不犯”。信息是指参与人在博弈中的知识,特别是有关其他参与人(对手)的特征和行动的知识。支付函数是参与人从博弈中获得的效用水平,它是所有参与人战略或行动的函数,是每个参与人真正关心的东西。结果是指博弈者感兴趣的要素的集合。均衡是所有参与人的最优战略或行动的组合。上述概念中,参与人、行动、结果统称为博弈规则。博弈分析的目的是使用博弈规则决定均衡。
博弈 bóyì [gambling and chess] 下棋 近几年来,博弈的观点频频出现在各类经济管理书籍中,那么,博弈究竟是什么?博弈对现代企业管理有何启发或指导意义呢? 通俗地讲,博弈论是一种“游戏理论”。其准确的定义是:一些个人、团队或其他组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,同时或先后,一次或多次,从各自允许选择的行为或策略进行选择并加以实施,并从中各自取得相应结果或收益的过程。 一个完整的博弈应当包括五个方面的内容:第一,博弈的参加者,即博弈过程中独立决策、独立承担后果的个人和组织;第二,博弈信息,即博弈者所掌握的对选择策略有帮助的情报资料;第三,博弈方可选择的全部行为或策略的集合;第四,博弈的次序,即博弈参加者做出策略选择的先后;第五,博弈方的收益,即各博弈方做出决策选择后的所得和所失。 博弈论对现代企业管理的意义可概括为两个方面。其一,博弈论的研究成果可直接运用于现代企业的经营决策之中。在市场经济条件下,企业之间的竞争日益加剧,行业内的竞争逐渐表现为几个大型集团之间的直接对抗,企业在这种情况下的经营总体战略和一般战略决策必须在充分掌握竞争对手信息和策略的情况下进行。从上述博弈定义来看,这类问题都可归结为博弈问题。因此,企业运用博弈论中的决策模型进行这些问题的决策将使决策过程更加合理化。 其二,博弈论对现代企业管理观念和方式的改变有着重要的指导意义。举个例子来说,从“囚徒困境”这个典型博弈问题,我们可以深刻体会到企业实施“供应链管理”的必要性。 “囚徒困境”讲的是两个同案犯罪嫌疑犯(囚徒)被警方拘捕后,为防其相互间串供,而分别拘捕、隔离审问时,两疑犯所面临的认罪策略选择的问题。 摆在两疑犯面前的选择无非两种:坦白或不坦白。按照我们通常的政策,坦白从宽,抗拒从严,所以若两人均坦白,则可从轻处理,分别判刑8年;若两人中有一人坦白而另一人拒不坦白,则坦白者可免于处罚,而拒不坦白者,将从重处罚被判10年;当然,若两人拒不交代,而警方手中又无足够的证据可以指控犯罪嫌疑人,那他们只能被按妨碍公务被判1年。 由于两个囚徒没有条件串供,因此,对两个囚徒总体来说,最佳结果不会是同时坦白,各判8年或都不坦白,各判1年。两囚徒决策时都以自己的最大利益为目标,结果是无法实现最大利益甚至较大利益。 在现实生活中,我们的企业与企业之间,尤其是企业与其供应商之间,很多情况下正如上面两个囚徒所遇情形一样,没能真正实现自身的最佳利益,甚至是损人不利己。因此,实施供应链管理,借助it工具,强化企业之间的合作,将是企业获得双赢局面的一条捷径。

文章TAG:什么  博弈  关系  博弈论  什么是博弈关系  
下一篇