1,问个菜鸟问题 什么是数据 数据的概念是什么

数据库是依照某种数据模型组织起来并存放二级存储器中的数据集合。这种数据集合具有如下特点:尽可能不重复,以最优方式为某个特定组织的多种应用服务,其数据结构独立于使用它的应用程序,对数据的增、删、改和检索由统一软件进行管理和控制。从发展的历史看,数据库是数据管理的高级阶段,它是由文件管理系统发展起来的。 数据库的基本结构分三个层次,反映了观察数据库的三种不同角度。 (1)物理数据层。它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。这些数据是原始数据,是用户加工的对象,由内部模式描述的指令操作处理的位串、字符和字组成。 (2)概念数据层。它是数据库的中间一层,是数据库的整体逻辑表示。指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。它所涉及的是数据库所有对象的逻辑关系,而不是它们的物理情况,是数据库管理员概念下的数据库。 (3)逻辑数据层。它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。 数据库不同层次之间的联系是通过映射进行转换的。数据库具有以下主要特点: (1)实现数据共享。数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。 (2)减少数据的冗余度。同文件系统相比,由于数据库实现了数据共享,从而避免了用户各自建立应用文件。减少了大量重复数据,减少了数据冗余,维护了数据的一致性。 (3)数据的独立性。数据的独立性包括数据库中数据库的逻辑结构和应用程序相互独立,也包括数据物理结构的变化不影响数据的逻辑结构。 (4)数据实现集中控制。文件管理方式中,数据处于一种分散的状态,不同的用户或同一用户在不同处理中其文件之间毫无关系。利用数据库可对数据进行集中控制和管理,并通过数据模型表示各种数据的组织以及数据间的联系。 (5)数据一致性和可维护性,以确保数据的安全性和可靠性。主要包括:①安全性控制:以防止数据丢失、错误更新和越权使用;②完整性控制:保证数据的正确性、有效性和相容性;③并发控制:使在同一时间周期内,允许对数据实现多路存取,又能防止用户之间的不正常交互作用;④故障的发现和恢复:由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏
下面的概念希望能有帮助,^_^ 什么是数据库呢?当人们从不同的角度来描述这一概念时就有不同的定义(当然是描述性的)。例如,称数据库是一个"记录保存系统"(该定义强调了数据库是若干记录的集合)。又如称数据库是"人们为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合"(该定义侧重于数据的组织)。更有甚者称数据库是"一个数据仓库"。当然,这种说法虽然形象,但并不严谨。严格地说,数据库是"按照数据结构来组织、存储和管理数据的仓库"。在经济管理的日常工作中,常常需要把某些相关的数据放进这样"仓库",并根据管理的需要进行相应的处理。例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表20.6.3中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

问个菜鸟问题 什么是数据 数据的概念是什么

2,数据概念是什么

数据挖掘,涵盖了五个主题:数据、分类、关联分析、聚类和异常检测。 数据挖掘(DataMining),又称为数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。www.rumen8.com-找入门资料就到入门吧! 与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。 从广义上理解,数据、信息也是知识的表现形式,但是人们更把概念、规则、模式、规律和约束等看作知识。人们把数据看作是形成知识的源泉,好像从矿石中采矿或淘金一样。原始数据可以是结构化的,如关系数据库中的数据;也可以是半结构化的,如文本、图形和图像数据;甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现的知识可以被用于信息管理,查询优化,决策支持和过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门交叉学科,它把人们对数据的应用从低层次的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、数理统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。 数据挖掘能做什么? rumen8.com-入门吧,投资者入门的好帮手 1)数据挖掘能做以下六种不同事情(分析方法):www.rumen8.com-找入门资料就到入门吧 分类(Classification)www.rumen8com-入门吧-入门资料大全 估值(Estimation) www.rumen8com-入门吧-入门资料大全 预言(Prediction)rumen8.com-入门吧是最好的入门资料网站 相关性分组或关联规则(Affinitygroupingorassociationrules)www.rumen8com-入门吧-入门资料大全 聚集(Clustering)www.rumen8.com-找入门资料就到入门吧 描述和可视化(DescriptionandVisualization)www.rumen8.com-找入门资料就到入门吧 2)数据挖掘分类 www.rumen8com-入门吧-入门资料大全 以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘rumen8.com-入门吧收集整理入门资料 直接数据挖掘www.rumen8.com-找入门资料就到入门吧 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。rumen8.com-入门吧收集整理入门资料 间接数据挖掘www.rumen8.com-找入门资料就到入门吧 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。rumen8.com-入门吧是最好的入门资料网站 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘www.rumen8com-入门吧-入门资料大全 3)各种分析方法的简介rumen8.com-入门吧,投资者入门的好帮手 分类(Classification)rumen8.com-入门吧收集整理入门资料 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。
对于我来说: 就是一个或多个数值 概念什么的貌似没什么意义 123一组数据 112sa也是一组数据 只是它们在不同情况代表的意思不一样

数据概念是什么


文章TAG:数据  定义  包含  什么  数据定义包含什么  什么是数据  数据的概念是什么  
下一篇