量子通信到底什么意思,什么是量子通信将来对计算机发展和通信业发展有什么好处
来源:整理 编辑:金融知识 2023-06-29 03:26:57
本文目录一览
1,什么是量子通信将来对计算机发展和通信业发展有什么好处
只听说过有量子电脑。给你个例子以后的发展就是量子电脑和光子电脑。一台光子电脑应该能代理现在地球上的所有服务器。
2,什么是量子通信
所谓量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式,是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信具有高效率和绝对安全等特点,是目前国际量子物理和信息科学的研究热点。追溯量子通信的起源,还得从爱因斯坦的“幽灵”——量子纠缠的实证说起。由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。1982年,法国物理学家艾伦·爱斯派克特(AlainAspect)和他的小组成功地完成了一项实验,证实了微观粒子“量子纠缠”(quantumentanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。 量子纠缠证实了爱因斯坦的幽灵——超距作用(spooky action in a distance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信(QuantumTeleportation)的概念。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信概念的提出,使爱因斯坦的“幽灵(Spooky)”——量子纠缠效益开始真正发挥其真正的威力。1993年,在贝内特提出量子通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。经过二十多年的发展,量子通信这门学科已逐步从理论走向实验,并向实用化发展,主要涉及的领域包括:量子密码通信、量子远程传态和量子密集编码等。
3,什么是量子通讯
量子通讯(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。 量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。目前量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。 编辑本段量子通信系统 量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传送和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。 编辑本段量子通信发展史 1993年,C.H.Bennett提出了量子通信的概念;同年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传送的方案:将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处。其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品。该过程中传送的仅仅是原物的量子态,而不是原物本身。发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。在这个方案中,纠缠态的非定域性起着至关重要的作用。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。 1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。上世纪下半叶以来,科学家在“海森堡测不准定理”和“单量子不可复制定理”上,逐渐建立了量子密码术的概念。“海森堡测不准原理”是量子力学的基本原理,指在同一时刻以相同精度测定量子的位置与动量是不可能的,只能精确测定两者之一。“单量子不可复制定理”是“海森堡测不准原理”的推论,指在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态。 量子密码术突破了传统加密方法的束缚,以量子状态作为密钥具有不可复制性,可以说是“绝对安全”的。任何截获或测试量子密钥的操作,都会改变量子状态。这样截获者得到的只是无意义的信息,而信息的合法接收者也可以从量子态的改变,知道密钥曾被截取过。与公开密钥算法不同,当量子计算机出现,量子密码术仍是安全的。在发送者和接收者之间传送量子密钥的一种方式是,激光发射以两种模式中的一种极化的单光子。在第一种模式中,光子垂直或水平摆放(直线模式);在第二种模式中,光子与垂直线呈 45 度角摆放(斜线模式)。 发送者(密码学家通常称之为艾丽斯)发送一串比特序列(量子振动的方向,即它们的偏振态,代表 0 或1 ,形成一连串的量子位,或称量子比特)。随机选择光子直线或斜线的传送模式。接收者(在密码学语言中称为鲍勃)同样随机决定对接收比特的测量模式。海森伯的测不准原理表明,鲍勃只能用一种模式测量光子,而不能同时使用两种模式。只有鲍勃测量的模式和艾丽斯发送的模式相同,才能保证光子方向准确,从而保留准确数值。 传送完成后,鲍勃告诉艾丽斯,他使用哪种模式接收每一个光子,这一过程无须保密。然而,他不会透露每个光子代表的 0 或1 的数值。然后,艾丽斯告诉鲍勃哪些模式是正确的。双方都将接收模式不正确的光子视为无效。正确的测量模式组成一个密钥,作为用来加密或解密一条信息的算法的输入值。 如果有人试图拦截光子流(称她为伊芙),海森伯的原理使她无法用两种模式同时测量。如果她用错误的模式对某一光子进行测量,必然会发生误差。通过对所选光子的比较和对误差的检查,艾丽斯和鲍勃就能够发现窃听者的存在。
文章TAG:
量子通信到底什么意思量子通信 通信 到底