本文目录一览

1,教科书式的解释什么是大数据

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
1、大数据是相对于传统"小数据"的,大数据,官方定义是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集无法用传统的数据库进行存储,管理和处理。大数据的主要特点为数据量大(Volume),数据类别复杂(Variety),数据处理速度快(再看看别人怎么说的。

教科书式的解释什么是大数据

2,什么是大数据

简单说,大数据一般指数据多(一般多到人类要很费劲很费劲才能用计算机过一遍),而且常常不仅多,其中还大部分都没什么价值……大数据技术就是从这些大部分都没用的数据里找出有用的东西的技术。现在的发展,可能技术层面上谈不上有什么巨大的,算法似乎还是那些算法,只是应用层面上比较热乎,所以大家经常都愿意来谈一谈。一个词变热乎,经常并不是因为技术突破,而是因为观念突破,是其中蕴含的商业价值受到了产业界广泛的接受、认可和重视。大数据面临的主要问题(和挑战)是规模大到一定程度之后,“小数据”时可以轻松处理的问题常常会一下子变得寸步难行,于是各种工程上的决策往往都必须精打细算。以前“小数据”常常只关心算法的数量级就行,而大数据开始必须关心算法的时间常数(因为半年和一年常常有本质区别)、通讯复杂度(因为网络和硬盘经常太慢了)、以及是否能有效并行(因为添加机器数量常常是最容易的事情)。于是凡是常数太大的,通讯复杂度太大的,或者不能有效并行的算法,想要用在大数据上,常常必须重新设计。目前国内有不错的大数据工具,比如,大数据魔镜,一款很实用的大数据可视化分析工具。

什么是大数据

3,大数据与小数据的关系

大数据技术与小数据技术恰恰相反,它更多是一种宏观的技术思维,是让我们从“盘子里”跳出来,以更宽阔的视野寻找答案的动力,是帮助我们从各种类型的数据中综合而且快速获得有价值信息的能力。就像操作系统一样。如果说小数据是安卓(只能用于手机),大数据就是XP。它承载更多,速度更快,分析更准,容量更多元,且能引发一场技术性的变革。在技术准备上,与小数据的单一相比,大数据也更为广泛,几乎穷尽现今的一切互联网技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网和可扩展的存储系统等。
1.大数据与小数据,大量数据的区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这就颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。2.还有一个重要的区别是在用途上,过去的数据很大程度上停留在说明过去的状态,拿数据说话,实际上是用过去的数据说明过去,而大数据的核心就是预测。大数据将为人类的生活创造前所未有的可量化的维度。使数据从原来停留在说明过去变为驱动现在,我以为预测对企业的作用从两个方向:a.宏观是对趋势的预测,给企业做大势分析,b.微观是对个体的精准分析,给企业做个性化精准营销3.从结构上,大数据更多的体现在海量非结构化数据本身与处理方法的整合大数据与小数据判断原则:a.数据的量b.数据的种类、格式c.数据的处理速度d.数据复杂度4.分析基础不同,大数据是只有在大规模数据的基础上才可以做的事情,而这需要有从量变到质变的过程,也正因为科技的创新在方法上打下基础,而利用互联网展开的新的生活与工作方式,让信息积累到可以引发变革的程度,而很多事情在小规模数据的基础上是无法完成的也就是说,数据驱动企业是一个数据积累从量变到质变的过程,不是工具问题,是数据积累问题。一切以为做个好的信息化工具就可以实现数据驱动企业,都会出问题。大数据带来的改变?前面所有的文章都在谈改变。这个话题要不停地谈。其最主要的是其让我们获得新认知,创造新的价值;从而改变市场、组织机构,政府与企业。改变企业的商业模式与运营模式、改变目前的所有行业,目前已经在天文学和基因学得到广泛利用。

大数据与小数据的关系

4,什么是大数据

大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。什么是大数据大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据历史和当前考虑因素虽然术语“大数据”相对较新,但收集和存储大量信息以进行最终分析的行为已经很久了。这个概念在 21 世纪初获得了动力,当时行业分析师 Doug Laney 将现在主流的大数据定义表达为三个 V:1.卷,组织从各种来源收集数据,包括业务交易,社交媒体和来自传感器或机器到机器数据的信息。在过去,存储它将是一个问题 – 但新技术(如 Hadoop)减轻了负担。2.速度,数据以前所未有的速度流入,必须及时处理。RFID 标签,传感器和智能电表正在推动近乎实时处理数据的需求。3.品种,数据有各种格式 – 从传统数据库中的结构化数字数据到非结构化文本文档,电子邮件,视频,音频,股票报价数据和金融交易。在 SAS,我们在大数据方面考虑两个额外的维度:1.变化性,除了速度和数据种类的增加之外,数据流还可能与周期性峰值高度不一致。社交媒体中有什么趋势吗?每日,季节性和事件触发的峰值数据负载可能难以管理。非结构化数据更是如此。2.复杂,今天的数据来自多个来源,这使得难以跨系统链接,匹配,清理和转换数据。但是,有必要连接和关联关系,层次结构和多个数据链接,否则您的数据可能会迅速失控。为什么大数据很重要?大数据的重要性不在于您拥有多少数据,而在于您使用它做了多少。您可以从任何来源获取数据并进行分析,以找到能够降低成本,减少时间,新产品开发和优化产品,以及智能决策的答案。将大数据与高性能分析结合使用时,您可以完成与业务相关的任务,例如:1.近乎实时地确定故障,问题和缺陷的根本原因;2.根据客户的购买习惯在销售点生成优惠券;3.在几分钟内重新计算整个风险组合;4.在欺诈行为影响您的组织之前检测它。
5G大数据专业。5G时代已经来临,信息传播的速度更快,在这样的时代环境下,传播行业无疑是最好的发展行业,也最适合女生,因为相比于其他计算机专业,新媒体技术专业比较创意和策划,对于女生来说,这些都是强项。关于就业,毕业生可从事新闻出版行业书刊、杂志、报纸的数字化出版与传播工作或者是从事新媒体、网络与电子商务企业信息的采集、组织与印制工作等,这些工作岗位也是非常适合女生的。

5,想要了解什么是大数据吗

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取:关系数据库、NOSQL、SQL等。基础架构:云存储、分布式文件存储等。数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)模型预测:预测模型、机器学习、建模仿真。结果呈现:云计算、标签云、关系图等。要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。第一,数据体量巨大。从TB级别,跃升到PB级别。第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。

文章TAG:什么是大数据原则小数据原则什么  大数  大数据  
下一篇